Existence of Solutions for Nonconvex Third Order Differential Inclusions.

Britney Hopkins
Department of Mathematics and Statistics
University of Arkansas at Little Rock
2801 S. University
Little Rock, AR 72204
bjhopkins1@ualr.edu

Abstract

This paper proves the existence of solutions for a third order initial value nonconvex differential inclusion. We start with an upper semicontinuous compact valued multifunction F which is contained in a lower semicontinuous convex function ∂V and show that, $$
x^{(3)}(t) \in F\left(x(t), x^{\prime}(t), x^{\prime \prime}(t)\right), x(0)=x_{0}, x^{\prime}(0)=y_{0}, x^{\prime \prime}(0)=z_{0}
$$

Keywords: Nonconvex Differential Inclusions
AMS Subject Classification: 34G20, 47H20

1 Introduction

The origins of boundary and initial value problems for differential inclusions are in the theory of differential equations and serve as models for a variety of applications including control theory. Existence results for the second order differential inclusion,

$$
x^{\prime \prime} \in F\left(x, x^{\prime}\right), x(0)=x_{0}, x^{\prime}(0)=y_{0},
$$

have been obtained by many authors (see [4], [5] and the references therein). In [5], Lupulescu showed existence for the problem

$$
x^{\prime \prime} \in F\left(x, x^{\prime}\right)+f\left(t, x, x^{\prime}\right), x(0)=x_{0}, x^{\prime}(0)=y_{0}
$$

for the case in which F is an upper semicontinuous compact valued multifunction such the $F(x, y) \subset$ $\partial V(y)$ and f is a Carathéodory function.

In this paper, we prove an existence result for the third order differential inclusion,

$$
x^{(3)}(t) \in F\left(x(t), x^{\prime}(t), x^{\prime \prime}(t)\right), x(0)=x_{0}, x^{\prime}(0)=y_{0}, x^{\prime \prime}(0)=z_{0}
$$

where F is an upper semicontinuous compact valued multifunction and $F(x, y, z) \subset \partial V(z)$ for some proper lower semicontinuous convex function V. Expounding upon the methods used to establish existence by Lupulescu in [4] and [5], we define a sequence of approximate solutions on a given interval and show that the sequence converges to an actual solution.

2 Preliminaries

Let \mathbb{R}^{m} be an m dimensional Euclidean space with an inner product $\langle\cdot, \cdot\rangle$ and norm $\|\cdot\|$.
Let $x \in \mathbb{R}^{m}$ and $r>0$. The open ball centered at x with radius r is defined by

$$
B_{r}(x)=\left\{y \in \mathbb{R}^{m}:\|x-y\|<r\right\}
$$

where $\bar{B}_{r}(x)$ denotes its closure.
For the proper lower semicontinuous convex function $V: \mathbb{R}^{m} \rightarrow \mathbb{R}$, the multifunction ∂V : $\mathbb{R}^{m} \rightarrow 2^{\mathbb{R}^{m}}$ defined by

$$
\partial V(x)=\left\{\gamma \in R^{m}: V(y)-V(x) \geq\langle\gamma, y-x\rangle, \forall y \in \mathbb{R}^{m}\right\},
$$

is the subdifferential of V.
Let $L^{2}[a, b]$ be a Hilbert space with the inner product defined by

$$
\langle x, y\rangle=\int_{a}^{b} x(t) \overline{y(t)} d t
$$

where $\overline{y(t)}$ denotes the complex conjugate of $y(t)$, and the norm is defined as

$$
\|x\|=\sqrt{\int_{a}^{b}|x(t)|^{2} d t}
$$

Let $\overline{c o} F(x, y, z)$ denote the closed convex hull of F and $x_{n} \rightrightarrows x$ denote that x_{n} converges uniformly to x.

We need the following theorems from Aubin and Cellina [1].
Theorem 0.3.4 Consider a sequence of absolutely continuous functions $x_{k}(\cdot)$ from an interval I to a Banach Space X satisfying
(i) for every $t \in I, x_{k}(t)_{k}$ is a relatively compact subset of X;
(ii) there exists a positive function $c(\cdot) \in L^{2}(I)$ such that, for almost all $t \in I,\left\|x_{k}^{\prime}(t)\right\| \leq c(t)$.

Then there exists a subsequence, again denoted by $x_{k}(\cdot)$, converging to an absolutely continuous function $x(\cdot)$ from I to X in the sense that
(i) $x_{k}(\cdot)$ converges uniformly to $x(\cdot)$ over compact subsets of I;
(ii) $x_{k}^{\prime}(\cdot)$ converges weakly to $x_{k}^{\prime}(\cdot)$ in $L^{2}(I, X)$.

Theorem 1.1.4 (the Convergence Theorem) Let F be a proper hemicontinuous map from a Hausdorff locally convex space X to the closed convex subsets of a Banach Space Y. Let I be an interval of \mathbb{R} and $x_{k}(\cdot)$ and $y_{k}(\cdot)$ be measurable functions from I to Y respectively satisfying for almost all t in I and for every neighborhood \aleph of 0 in $X \times Y$, there exists a $k_{0}=k_{0}(t, \aleph)$ such that for every $k_{0} \leq k,\left(x_{k}(t), y_{k}(t)\right) \in \operatorname{graph}(F)+\aleph$. If,
(i) $x_{k}(\cdot)$ converges almost everywhere to a function $x(\cdot)$ from I to X;
(ii) $y_{k}(\cdot)$ belongs to $L^{2}(I, Y)$ and converges weakly to $y(\cdot)$ in $L^{2}(I, Y)$,
then, for almost all $t \in I$,

$$
(x(t), y(t)) \in \operatorname{graph}(F) \text { i.e. } y(t) \in F(x(t)) .
$$

We also need the following lemma from Brezis [2].
Lemma 3.3 Let $u \in D(V)$ almost everywhere on $[0, T]$ and suppose $g \in L^{2}([0, T], \mathbb{R})$ such that $g(t) \in \partial V(u(t))$ almost everywhere on $[0, T]$. Then, the function $t \longmapsto V(u(t))$ is absolutely continuous on $[0, T]$.

Also, let $t \in[0, T]$ such that $u(t) \in D(V)$ and let u and $V(u)$ be differentiable. Then for all $t \in[0, T]$

$$
\frac{d}{d t} V(u(t))=\left\langle h, \frac{d u}{d t}(t)\right\rangle \forall h \in \partial V(u(t))
$$

3 The Main Result

THEOREM: If $F: \Omega \rightarrow 2^{\mathbb{R}^{m}}$ and $V: \mathbb{R}^{m} \rightarrow \mathbb{R}$ satisfy the assumptions
(A1) $\Omega \subset \mathbb{R}^{2 m}$ where Ω is open and $F: \Omega \rightarrow 2^{\mathbb{R}^{m}}$ is a compact valued upper semicontinuous multifunction;
(A2) there exists a lower semicontinuous proper convex function $V: \mathbb{R}^{m} \rightarrow \mathbb{R}$ such that $F(x, y, z) \subset \partial V(z)$ for every $(x, y, z) \in \Omega$.

Then, for every $\left(x_{0}, y_{0}, z_{0}\right) \in \Omega$, there exists a $T>0$ and a solution $x:[0, T] \rightarrow \mathbb{R}^{m}$ of

$$
\begin{equation*}
x^{(3)}(t) \in F\left(x(t), x^{\prime}(t), x^{\prime \prime}(t)\right), x(0)=x_{0}, x^{\prime}(0)=y_{0}, x^{\prime \prime}(0)=z_{0} . \tag{1}
\end{equation*}
$$

By a solution we are referring to an absolutely continuous function $x:[0, T] \rightarrow \mathbb{R}^{m}$ with absolutely continuous first and second derivatives with the initial values $x(0)=x_{0}, x^{\prime}(0)=y_{0}$, $x^{\prime \prime}(0)=z_{0}$, and $x^{(3)}(t) \in F\left(x(t), x^{\prime}(t), x^{\prime \prime}(t)\right)$, a.e. on $[0, T]$.

PROOF: Suppose $\left(x_{0}, y_{0}, z_{0}\right) \in \Omega$. Then, $K=\bar{B}_{r}\left(x_{0}, y_{0}, z_{0}\right) \subset \Omega$ for some $r>0$ since Ω is open. By assumption (A1)

$$
F(K)=\bigcup_{(x, y, z) \in K} F(x, y, z)
$$

is compact. Then there exists an $M>0$ such that

$$
\begin{equation*}
\sup \{\|v\|: v \in F(x, y, z),(x, y, z) \in K)\} \leq M \tag{2}
\end{equation*}
$$

Set

$$
\begin{equation*}
T<\min \left\{\frac{r}{M},\left(\frac{r}{M}\right)^{\frac{1}{2}},\left(\frac{r}{M}\right)^{\frac{1}{3}}, \frac{r}{2\left\|z_{0}\right\|}, \frac{r}{2\left\|y_{0}\right\|},\left(\frac{2 r}{3\left\|z_{0}\right\|}\right)^{\frac{1}{2}}\right\} . \tag{3}
\end{equation*}
$$

Let n, j be integers where $1 \leq j \leq n$. Set $t_{n}^{j}=\frac{j T}{n}$. For $t \in\left[t_{n}^{j-1}, t_{n}^{j}\right]$ define,

$$
\begin{equation*}
x_{n}(t)=x_{n}^{j}+\left(t-t_{n}^{j}\right) y_{n}^{j}+\frac{1}{2}\left(t-t_{n}^{j}\right)^{2} z_{n}^{j}+\frac{1}{6}\left(t-t_{n}^{j}\right)^{3} v_{n}^{j} \tag{4}
\end{equation*}
$$

where $x_{n}^{0}=x_{0}, y_{n}^{0}=y_{0}$, and $z_{n}^{0}=z_{0}$.
For $0 \leq j \leq n-1$ and $v_{n}^{j} \in F\left(x_{n}^{j}, y_{n}^{j}, z_{n}^{j}\right)$, define

$$
\begin{cases}x_{n}^{j+1} & =x_{n}^{j}+\left(\frac{T}{n}\right) y_{n}^{j}+\frac{1}{2}\left(\frac{T}{n}\right)^{2} z_{n}^{j}+\frac{1}{6}\left(\frac{T}{n}\right)^{3} v_{n}^{j} \tag{5}\\ y_{n}^{j+1} & =y_{n}^{j}+\left(\frac{T}{n}\right) z_{n}^{j}+\frac{1}{2}\left(\frac{T}{n}\right)^{2} v_{n}^{j} \\ z_{n}^{j+1} & =z_{n}^{j}+\left(\frac{T}{n}\right) v_{n}^{j} .\end{cases}
$$

We claim that $\left(x_{n}^{1}, y_{n}^{1}, z_{n}^{1}\right) \in K$. Using (5), we have

$$
\left\|z_{n}^{1}-z_{0}\right\|=\left\|z_{n}^{0}+\left(\frac{T}{n}\right) v_{n}^{0}-z_{0}\right\| \leq\left(\frac{T}{n}\right) M<r .
$$

As well as,

$$
\begin{aligned}
\left\|y_{n}^{1}-y_{0}\right\| & =\left\|y_{n}^{0}+\left(\frac{T}{n}\right) z_{n}^{0}+\frac{1}{2}\left(\frac{T}{n}\right)^{2} v_{n}^{0}-y_{0}\right\| \\
& \leq\left(\frac{T}{n}\right)\left\|z_{0}\right\|+\frac{1}{2}\left(\frac{T}{n}\right)^{2} M \\
& <\frac{1}{2} r+\frac{1}{2} r=r
\end{aligned}
$$

Also,

$$
\begin{aligned}
\left\|x_{n}^{1}-x_{0}\right\| & =\left\|x_{n}^{0}+\left(\frac{T}{n}\right) y_{n}^{0}+\frac{1}{2}\left(\frac{T}{n}\right)^{2} z_{n}^{0}+\frac{1}{6}\left(\frac{T}{n}\right)^{3} v_{n}^{0}-x_{0}\right\| \\
& \leq\left(\frac{T}{n}\right)\left\|y_{0}\right\|+\frac{1}{2}\left(\frac{T}{n}\right)^{2}\left\|z_{0}\right\|+\frac{1}{6}\left(\frac{T}{n}\right)^{3} M \\
& <T\left\|y_{0}\right\|+\frac{1}{2} T^{2}\left\|z_{0}\right\|+\frac{1}{6} T^{3} M \\
& <\frac{1}{2} r+\frac{1}{3} r+\frac{1}{6} r=r .
\end{aligned}
$$

Hence the claim holds. Now suppose $j \geq 1$. We make the assumption that,

$$
\left\{\begin{align*}
x_{n}^{j}= & x_{n}^{0}+j\left(\frac{T}{n}\right) y_{n}^{0}+\frac{1}{2}\left(\frac{j T}{n}\right)^{2} z_{n}^{0}+\frac{1}{6}\left(\frac{T}{n}\right)^{3}\left[\left(3 j^{2}-3 j+1\right) v_{n}^{0}+\left(3 j^{2}-9 j+7\right) v_{n}^{1}\right. \tag{6}\\
& \left.+\left(3 j^{2}-15 j+19\right) v_{n}^{2}+\cdots+7 v_{n}^{j-2}+v_{n}^{j-1}\right] \\
y_{n}^{j}= & y_{n}^{0}+j\left(\frac{T}{n}\right) z_{n}^{0}+\frac{1}{2}\left(\frac{T}{n}\right)^{2}\left[(2 j-1) v_{n}^{0}+(2 j-3) v_{n}^{1}+\cdots+3 v_{n}^{j-2}+v_{n}^{j-1}\right] \\
z_{n}^{j}= & z_{n}^{0}+\left(\frac{T}{n}\right)\left[v_{n}^{0}+v_{n}^{1}+\cdots+v_{n}^{j-1}\right]
\end{align*}\right.
$$

To see this, let $j=1$. Then,

$$
\begin{gathered}
z_{n}^{1}=z_{n}^{0}+\left(\frac{T}{n}\right) v_{n}^{0}=z_{n}^{0+1} \\
y_{n}^{1}=y_{n}^{0}+\frac{T}{n} z_{n}^{0}+\frac{1}{2}\left(\frac{T}{n}\right)^{2} v_{n}^{0}=y_{n}^{0+1} \\
x_{n}^{1}=x_{n}^{0}+\frac{T}{n} y_{n}^{0}+\frac{1}{2}\left(\frac{T}{n}\right)^{2} z_{n}^{0}+\frac{1}{6}\left(\frac{T}{n}\right)^{3} v_{n}^{0}=x_{n}^{0+1} .
\end{gathered}
$$

Thus, (6) holds when $j=1$. Let's suppose assumption (6) holds for $j>1$. Using (5) we see that,

$$
\begin{aligned}
z_{n}^{j+1} & =z_{n}^{j}+\left(\frac{T}{n}\right) v_{n}^{j} \\
& =z_{n}^{0}+\left(\frac{T}{n}\right)\left[v_{n}^{0}+v_{n}^{1}+\cdots+v_{n}^{j-1}\right]+\left(\frac{T}{n}\right) v_{j}^{n} \\
& =z_{n}^{0}+\left(\frac{T}{n}\right)\left[v_{n}^{0}+v_{n}^{1}+\cdots+v_{n}^{j}\right]
\end{aligned}
$$

Thus the assumption holds for z_{n}^{j}. Using this and (5) we have,

$$
\begin{aligned}
y_{n}^{j+1}= & y_{n}^{j}+\left(\frac{T}{n}\right) z_{n}^{j}+\frac{1}{2}\left(\frac{T}{n}\right)^{2} v_{n}^{j} \\
= & y_{n}^{0}+j\left(\frac{T}{n}\right) z_{n}^{0}+\frac{1}{2}\left(\frac{T}{n}\right)^{2}\left[(2 j-1) v_{n}^{0}+(2 j-3) v_{n}^{1}+\cdots+3 v_{n}^{j-2}+v_{n}^{j-1}\right] \\
& +\left(\frac{T}{n}\right)\left(z_{n}^{0}+\frac{T}{n}\left[v_{n}^{0}+v_{n}^{1}+\cdots+v_{n}^{j-1}\right]\right)+\frac{1}{2}\left(\frac{T}{n}\right)^{2} v_{n}^{j} \\
= & y_{n}^{0}+(j+1)\left(\frac{T}{n}\right) z_{n}^{0}+\left(\frac{T}{n}\right)^{2}\left[\left(j-\frac{1}{2}\right) v_{n}^{0}+\left(j-\frac{3}{2}\right) v_{n}^{1}+\cdots+\frac{1}{2} v_{n}^{j-1}+v_{n}^{1}+\ldots v_{n}^{j-1}\right] \\
& +\frac{1}{2}\left(\frac{T}{n}\right)^{2} v_{n}^{j} \\
= & y_{n}^{0}+(j+1)\left(\frac{T}{n}\right) z_{n}^{0}+\left(\frac{T}{n}\right)^{2}\left[\left(j+\frac{1}{2}\right) v_{n}^{0}+\left(j-\frac{1}{2}\right) v_{n}^{1}+\cdots+\frac{3}{2} v_{n}^{j-1}+\frac{1}{2} v_{n}^{j}\right] \\
= & y_{n}^{0}+(j+1)\left(\frac{T}{n}\right) z_{n}^{0}+\frac{1}{2}\left(\frac{T}{n}\right)^{2}\left[(2 j+1) v_{n}^{0}+(2 j-1) v_{n}^{1}+\cdots+v_{n}^{j}\right] \\
= & y_{n}^{0}+(j+1)\left(\frac{T}{n}\right) z_{n}^{0}+\frac{1}{2}\left(\frac{T}{n}\right)^{2}\left[(2(j+1)-1) v_{n}^{0}+(2(j-1)-3) v_{n}^{1}+\cdots+v_{n}^{j}\right] .
\end{aligned}
$$

Thus the assumption holds for y_{n}^{j}. Finally, with this and (5) we have,

$$
\begin{aligned}
x_{n}^{j+1}= & x_{n}^{j}+\left(\frac{T}{n}\right) y_{n}^{j}+\frac{1}{2}\left(\frac{T}{n}\right)^{2} z_{n}^{j}+\frac{1}{6}\left(\frac{T}{n}\right)^{3} v_{n}^{j} \\
= & x_{n}^{0}+j\left(\frac{T}{n}\right) y_{n}^{0}+\frac{1}{2}\left(\frac{j T}{n}\right)^{2} z_{n}^{0}+\frac{1}{6}\left(\frac{T}{n}\right)^{3}\left[\left(3 j^{2}-3 j+1\right) v_{n}^{0}+\left(3 j^{2}-9 j+7\right) v_{n}^{1}+\cdots+v_{n}^{j-1}\right] \\
& +\left(\frac{T}{n}\right)\left(y_{n}^{0}+j\left(\frac{T}{n}\right) z_{n}^{0}+\frac{1}{2}\left(\frac{T}{n}\right)^{2}\left[(2 j-1) v_{n}^{0}+(2 j-3) v_{n}^{1}+\cdots+3 v_{n}^{j-2}+v_{n}^{j-1}\right]\right) \\
& +\frac{1}{2}\left(\frac{T}{n}\right)^{2}\left(z_{n}^{0}+\frac{T}{n}\left[v_{n}^{0}+\cdots+v_{n}^{j-1}\right]\right)+\frac{1}{6}\left(\frac{T}{n}\right)^{3} v_{n}^{j}
\end{aligned}
$$

$$
\begin{aligned}
= & x_{n}^{0}+(j+1)\left(\frac{T}{n}\right) y_{n}^{0}+\frac{1}{2}(j+1)^{2}\left(\frac{T}{n}\right)^{2} z_{n}^{0} \\
& +\frac{1}{6}\left(\frac{T}{n}\right)^{3}\left[\left(3 j^{2}-3 j+1\right) v_{n}^{0}+\left(3 j^{2}-9 j+7\right) v_{n}^{1}+\cdots+v_{n}^{j-1}\right] \\
& +\left(\frac{T}{n}\right)^{3}\left[j v_{n}^{0}+(j-1) v_{n}^{1}+\cdots+v_{n}^{j-1}\right]+\frac{1}{6}\left(\frac{T}{n}\right)^{3} v_{n}^{j} \\
= & x_{n}^{0}+(j+1)\left(\frac{T}{n}\right) y_{n}^{0}+\frac{1}{2}(j+1)^{2}\left(\frac{T}{n}\right)^{2} z_{n}^{0} \\
& +\frac{1}{6}\left(\frac{T}{n}\right)^{3}\left[\left(3 j^{2}-3 j+1\right) v_{n}^{0}+\left(3 j^{2}-9 j+7\right) v_{n}^{1}+\cdots+v_{n}^{j-1}\right] \\
& +\frac{1}{6}\left(\frac{T}{n}\right)^{3}\left[6 j v_{n}^{0}+(6 j-6) v_{n}^{1}+\cdots+6 v_{n}^{j-1}\right]+\frac{1}{6}\left(\frac{T}{n}\right)^{3} v_{n}^{j} \\
= & x_{n}^{0}+(j+1)\left(\frac{T}{n}\right) y_{n}^{0}+\frac{1}{2}(j+1)^{2}\left(\frac{T}{n}\right)^{2} z_{n}^{0} \\
& +\frac{1}{6}\left(\frac{T}{n}\right)^{3}\left[\left(3 j^{2}+3 j+1\right) v_{n}^{0}+\left(3 j^{2}-3 j+1\right) v_{n}^{1}+\cdots+7 v_{n}^{j-1}+v_{n}^{j}\right]
\end{aligned}
$$

Thus the assumption holds for x_{n}^{j}. Using (2), (3) and the relations in (6), we show that $\left(x_{n}^{j}, y_{n}^{j}, z_{n}^{j}\right) \in$ K.

$$
\begin{aligned}
\left\|z_{n}^{j}-z_{0}\right\| & =\left\|z_{n}^{0}+\left(\frac{T}{n}\right)\left[v_{n}^{0}+v_{n}^{1}+\cdots+v_{n}^{j-1}\right]-z_{0}\right\| \\
& \leq j\left(\frac{T}{n}\right) M \\
& \leq T M \\
& <r .
\end{aligned}
$$

And,

$$
\begin{aligned}
\left\|y_{n}^{j}-y_{0}\right\| & =\left\|y_{n}^{0}+j\left(\frac{T}{n}\right) z_{n}^{0}+\frac{1}{2}\left(\frac{T}{n}\right)^{2}\left[(2 j-1) v_{n}^{0}+(2 j-3) v_{n}^{1}+\cdots+3 v_{n}^{j-2}+v_{n}^{j-1}\right]-y_{0}\right\| \\
& \leq j\left(\frac{T}{n}\right)\left\|z_{0}\right\|+\frac{1}{2}\left(\frac{j T}{n}\right)^{2} M \\
& \leq T\left\|z_{0}\right\|+\frac{1}{2} T^{2} M \\
& <\frac{1}{2} r+\frac{1}{2} r \\
& =r
\end{aligned}
$$

Finally,

$$
\begin{aligned}
\left\|x_{n}^{j}-x_{0}\right\|= & \| x_{n}^{0}+j\left(\frac{T}{n}\right) y_{n}^{0}+\frac{1}{2}\left(\frac{j T}{n}\right)^{2} z_{n}^{0} \\
& +\frac{1}{6}\left(\frac{T}{n}\right)^{3}\left[\left(3 j^{2}-3 j+1\right) v_{n}^{0}+\left(3 j^{2}-9 j+7\right) v_{n}^{1}+\cdots+v_{n}^{j-1}\right]-x_{0} \| \\
\leq & \frac{j T}{n}\left\|y_{0}\right\|+\frac{1}{2}\left(\frac{j T}{n}\right)^{2}\left\|z_{0}\right\|+\frac{1}{6}\left(\frac{j T}{n}\right)^{3} M \\
\leq & T\left\|y_{0}\right\|+\frac{1}{2} T^{2}\left\|z_{0}\right\|+\frac{1}{6} T^{3} M \\
& <\frac{1}{2} r+\frac{1}{2}\left(\frac{2}{3}\right) r+\frac{1}{6} r=r
\end{aligned}
$$

Thus, $\left(x_{n}^{j}, y_{n}^{j}, z_{n}^{j}\right) \in K=B_{r}\left(x_{0}, y_{0}, z_{0}\right)$ for $1 \leq j \leq n$. Now, from the definition of x_{n} in (4) we have,

$$
\left\{\begin{array}{l}
x_{n}^{\prime}(t)=y_{n}^{j}+\left(t-t_{n}^{j}\right) z_{n}^{j}+\frac{1}{2}\left(t-t_{n}^{j}\right)^{2} v_{n}^{j} \tag{7}\\
x_{n}^{\prime \prime}(t)=z_{n}^{j}+\left(t-t_{n}^{j}\right) v_{n}^{j} \\
x_{n}^{(3)}(t)=v_{n}^{j}
\end{array}\right.
$$

By (2) we have that $\left\|x_{n}^{(3)}(t)\right\|=\left\|v_{n}^{j}\right\| \leq M$. Similarly, (2) and (3) give the following,

$$
\begin{aligned}
\left\|x_{n}^{\prime \prime}(t)\right\| & =\left\|z_{n}^{j}+\left(t-t_{n}^{j}\right) v_{n}^{j}\right\| \\
& =\left\|z_{n}^{0}+\left(\frac{T}{n}\right)\left[v_{n}^{0}+v_{n}^{1}+\cdots+v_{n}^{j-1}\right]+\left(t-t_{n}^{j}\right) v_{n}^{j}\right\| \\
& \leq\left\|z_{0}\right\|+\left(\frac{j T}{n}\right) M+\left(\frac{T}{n}\right) M \\
& <\left\|z_{0}\right\|+2 r
\end{aligned}
$$

As well as,

$$
\begin{aligned}
\left\|x_{n}^{\prime}(t)\right\| & =\left\|y_{n}^{j}+\left(t-t_{n}^{j}\right) z_{n}^{j}+\frac{1}{2}\left(t-t_{n}^{j}\right)^{2} v_{n}^{j}\right\| \\
& \leq\left\|y_{0}\right\|+\left(\frac{j T}{n}\right)\left\|z_{0}\right\|+\frac{1}{2}\left(\frac{j T}{n}\right)^{2} M+\left(\frac{T}{n}\right)\left\|z_{0}\right\|+\left(\frac{j T}{n}\right)^{2} M+\frac{1}{2}\left(\frac{T}{n}\right)^{2} M \\
& \leq\left\|y_{0}\right\|+T\left\|z_{0}\right\|+2 T^{2} M+T\left\|z_{0}\right\| \\
& <\left\|y_{0}\right\|+3 r .
\end{aligned}
$$

And finally,

$$
\begin{aligned}
\left\|x_{n}(t)\right\|= & \left\|x_{n}^{j}+\left(t-t_{n}^{j}\right) y_{n}^{j}+\frac{1}{2}\left(t-t_{n}^{j}\right)^{2} z_{n}^{j}+\frac{1}{6}\left(t-t_{n}^{j}\right)^{3} v_{n}^{j}\right\| \\
\leq & \left\|x_{0}\right\|+T\left\|y_{0}\right\|+\frac{1}{2} T^{2}\left\|z_{0}\right\|+\frac{1}{6} T^{3} M+\left(\frac{T}{n}\right)\left(\left\|y_{0}\right\|+T\left\|z_{0}\right\|+\frac{1}{2} T^{2} M\right) \\
& +\frac{1}{2}\left(\frac{T}{n}\right)^{2}\left(\left\|z_{0}\right\|+T M\right)+\frac{1}{6}\left(\frac{T}{n}\right)^{3} M \\
\leq & \left\|x_{0}\right\|+T\left\|y_{0}\right\|+\frac{1}{2} T^{2}\left\|z_{0}\right\|+\frac{1}{6} T^{3} M+T\left\|y_{0}\right\|+T^{2}\left\|z_{0}\right\| \\
& +\frac{1}{2} T^{3} M+\frac{1}{2} T^{2} M\left\|z_{0}\right\|+\frac{1}{2} T^{3} M+\frac{1}{6} T^{3} M \\
= & \left\|x_{0}\right\|+2 T\left\|y_{0}\right\|+2 T^{2}\left\|z_{0}\right\|+T^{3} M+\frac{1}{3} T^{3} M \\
< & \left\|x_{0}\right\|+r+\frac{4}{3} r+r+\frac{1}{3} r \\
< & \left\|x_{0}\right\|+4 r .
\end{aligned}
$$

Since $\left\|x_{n}^{(3)}(t)\right\| \leq M \forall t \in[0, T]$ the sequence $\left(x_{n}^{(3)}(t)\right)$ is bounded in $L^{2}\left([0, T], R^{m}\right)$. Furthermore, suppose $\varepsilon>0$ and $\forall t \in[0, T]$, and $\forall \tau \in[0, T],|t-\tau|<\frac{\varepsilon}{M}$. Then,

$$
\begin{aligned}
\left\|x_{n}^{\prime \prime}(t)-x_{n}^{\prime \prime}(\tau)\right\| & \leq\left|\int_{\tau}^{t}\left\|x_{n}^{(3)}(s)\right\| d s\right| \\
& \leq\left|\int_{\tau}^{t} M d s\right| \\
& =M|t-\tau| \\
& \leq M\left(\frac{\varepsilon}{M}\right) \\
& =\varepsilon
\end{aligned}
$$

Thus, $\left(x_{n}^{\prime \prime}\right)$ is equicontinuous. Similarly $\left(x_{n}^{\prime}\right)$ and $\left(x_{n}\right)$ are equicontinuous. Theorem 0.3.4 in [1] gives the following:

There exists a subsequence, again denoted $\left(x_{n}\right)_{n}$ that converges to an absolutely continuous function $x:[0, T] \rightarrow R^{m}$ such that:
(i) $\left(x_{n}\right) \rightrightarrows x$ on $[0, T]$,
(ii) $\left(x_{n}^{\prime}\right) \rightrightarrows x^{\prime}$ on $[0, T]$,
(iii) $\left(x_{n}^{\prime \prime}\right) \rightrightarrows x^{\prime \prime}$ on $[0, T]$,
(iv) $\left(x_{n}^{(3)}\right)$ converges weakly to x^{3} in $L^{2}\left([0, T], R^{m}\right)$.

By the Convergence Theorem, theorem 1.4.1 in [1], we have that

$$
x^{(3)}(t) \in \overline{c o} F\left(x(t), x^{\prime}(t), x^{\prime \prime}(t)\right) \subset \partial V\left(x^{\prime \prime}(t)\right) \text { a.e., } t \in[0, T] .
$$

Also, by the above and lemma 3.3 in [2],

$$
\frac{d}{d t} V\left(x^{\prime \prime}(t)\right)=\left\langle x^{(3)}(t), x^{(3)}(t)\right\rangle=\left\|x^{(3)}(t)\right\|^{2}
$$

Since, $\int_{0}^{T} \frac{d}{d t} V\left(x^{\prime \prime}(t)\right) d t=\int_{0}^{T}\left\|x^{(3)}(t)\right\|^{2} d t$ we have,

$$
\begin{equation*}
V\left(x^{\prime \prime}(T)\right)-V\left(x^{\prime \prime}(0)\right)=\int_{0}^{T}\left\|x^{(3)}(t)\right\|^{2} d t \tag{8}
\end{equation*}
$$

However, by (7) we also have $x_{n}^{(3)}(t)=v_{n}^{j} \in F\left(x_{n}^{j}, y_{n}^{j}, z_{n}^{j}\right) \subset \partial V\left(x_{n}^{\prime \prime}\left(t_{n}^{j}\right)\right), \forall t \in\left[t_{n}^{j-1}, t_{n}^{j}\right]$. Which, from the definition of subdifferential, gives the following,

$$
\begin{aligned}
V\left(x_{n}^{\prime \prime}\left(t_{n}^{j}\right)\right)-V\left(x_{n}^{\prime \prime}\left(t_{n}^{j-1}\right)\right) & \geq\left\langle x_{n}^{(3)}(t), x_{n}^{\prime \prime}\left(t_{n}^{j}\right)-x_{n}^{\prime \prime}\left(t_{n}^{j-1}\right)\right\rangle \\
& =\left\langle x_{n}^{(3)}(t), \int_{t_{n}^{j-1}}^{t_{n}^{j}} x_{n}^{(3)}(s) d s\right\rangle \\
& =\int_{t_{n}^{j-1}}^{t_{n}^{j}}\left\langle x_{n}^{(3)}(t), x_{n}^{(3)}(t)\right\rangle d t \\
& =\int_{t_{n}^{j-1}}^{t_{n}^{j}}\left\|x_{n}^{(3)}(t)\right\|^{2} d t
\end{aligned}
$$

Combining the above inequalities with (8), we get the following inequality,

$$
V\left(x_{n}^{\prime \prime}(T)\right)-V\left(z_{0}\right) \geq \int_{0}^{T}\left\|x_{n}^{(3)}(t)\right\|^{2} d t
$$

If we let n approach infinity, we have

$$
\begin{aligned}
V\left(x^{\prime \prime}(T)\right)-V\left(z_{0}\right) & \geq \limsup _{n \rightarrow \infty} \int_{0}^{T}\left\|x_{n}^{(3)}(t)\right\|^{2} d t \\
\int_{0}^{T}\left\|x^{(3)}(t)\right\|^{2} d t & \geq \limsup _{n \rightarrow \infty} \int_{0}^{T}\left\|x_{n}^{(3)}(t)\right\|^{2} d t \\
\left\|x^{(3)}(t)\right\|^{2} & \geq \limsup _{n \rightarrow \infty}\left\|x_{n}^{(3)}(t)\right\|^{2}
\end{aligned}
$$

However, the weak lower semicontinuity of the norm gives,

$$
\left\|x^{(3)}(t)\right\|^{2} \leq \liminf _{n \rightarrow \infty}\left\|x_{n}^{(3)}(t)\right\|^{2}
$$

Thus we have,

$$
\left\|x^{(3)}(t)\right\|^{2}=\lim _{n \rightarrow \infty}\left\|x_{n}^{(3)}(t)\right\|^{2}
$$

Hence the sequence $\left(x_{n}^{(3)}\right) \rightarrow x^{(3)}$ pointwise. By assumption (A1), F is closed, implying

$$
x^{(3)}(t) \in F\left(x(t), x^{\prime}(t), x^{\prime \prime}(t)\right), \text { a.e. } t \in[0, T] .
$$

References

[1] J. P. Aubin and A. Cellina; Differential inclusions, Berlin, Springer-Verlag, 1984.
[2] H. Brezis; Operateurs Maximaux Monotones et Semigroups de Contractions Dans Les Espaces de Hilbert, Amsterdam, North-Holland, 1973.
[3] K. Deimling; Multivalued Differential Equations, Walter de Gruyter, Berlin, New York, 1992.
[4] V. Lupulescu; Existence of Solutions for Nonconvex Functional Differential Inclusions, Electronic Journal of Differential Equations, Vol. 2004(2004), No. 141, pp.1-6.
[5] V. Lupulescu; Existence of Soutions for Nonconvex Second Order Differential Inclusions, Applied Mathematics E-Notes, 3(2003), 115-123.
(Received September 16, 2005)

